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Abstract: The quality of water around a municipal dumpsite is greatly affected by the leaching chemicals 

from the landfill. The aim of this study is to assess the groundwater quality and to develop and compare 

the performance of Statistical Package of Social Science (SPSS) regression and Artificial Neural 

Network models around municipal dumpsite in Tamil Nadu, India. The groundwater samples were 

collected every month from the 16 sampling points during the study period from January 2013 to 

December 2017. The physico chemical parameters of the samples such as pH, acidity, alkalinity, 

Hardness, Chloride, Sulphate and Total Dissolved Solids (TDS) were analysed and Water Quality Index 

(WQI) was arrived. From this data, the highest and the lowest polluted points S14 and S5 respectively, 

among the 16 sampling points was found. Correlation analysis showed that TDS exhibited a high positive 

correlation with chloride and hardness. Two models using SPSS regression and one model using ANN 

modeling were developed to predict the TDS in the sampling points. The prediction capabilities of the 

ANN were compared with the SPSS regression models. The maximum percentage of error obtained from 

ANN and SPSS were 7.5% and 15.6% at S5 sampling point. ANN models were more accurate than the 

SPSS multi nonlinear regression models having the same inputs and output.    
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1.Introduction 
Water is the most basic element on which the life on depends for survival. The total freshwater 

quantity accounts to 3% of earth’s water, of this only 1% is available for human use [1]. This freshwater 

is present as both surface water and groundwater. We depend on these freshwater sources to meet our 

daily needs. Due to poor management of surface water sources, urbanisation and frequent pollution, the 

availability of surface water sources is in a decreasing trend [2]. At present, groundwater is the most 

sought-after freshwater source compared to surface water sources. This because the groundwater is a 

replenishable, comparatively safe and reliable water source [3]. 

In India, the municipal solid waste collected from most of the cities and towns is disposed by open 

landfill method. Organic matter such as food waste, paper, plant and animal residue etc., constitutes to 

about 80% in MSW, while the remaining contents are inorganic in nature [4]. The inorganic materials 

present in MSW are electronic waste, plastic, textile waste products, these materials affect the quality of 

environment leading to pollution of land and water resources [5]. The solid waste also contains heavy 

metals and toxic chemicals which leach out from the open dumpsite [6]. The major cause for the 

generation of leachate from land fill is the rainwater percolating through the solid waste. This leachate 

varies widely in composition with respect to the nature of waste and age of the landfill. It usually contains 

both dissolved and suspended material [7]. Landfill leachate is characterized by high organic, inorganic, 

xenobiotics, and heavy metal concentrations and is extremely toxic to the groundwater [8]. 

The artificial neural network (ANN) model is regarded as a highly useful tool for establishing 

complicated non-linear relations of parameters [9]. Warren M and Walter P first proposed the conceptual 

theory of Artificial Neurons in the year 1943 [10]. Neural networks are composed of highly 

interconnected, simple processing units which are inspired by neural process observed in the human 
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brain. It is used to predict the likelihood of an event. The predicted attributes of the event make the 

model versatile and more effective [11]. In this study the samples were collected from the sampling 

points around the municipal dumpsite and tested for its physico chemical characteristics, further the 

Water Quality Index (WQI) was arrived, on the basis of which quality of groundwater around the 

dumpsite was categorised. ANN model is applied for predicting TDS value of the groundwater in the 

study area. This study also compares the predicted TDS values by ANN model and Statistical Package 

for the Social Sciences (SPSS) regression analysis. 

 

2.Materials and methods 
2.1 Study area  

This study was to analyse the quality of groundwater sources, around the solid wastes dumping site 

at Ramaiyanpatti, Tirunelveli City, Tamilnadu state, India. Ramaiyanpatti is naturally an undulating area 

which is located in the northwest of Tirunelveli city (Figure 1). It has been used as a solid waste dumping 

area for the past 15 years. Protection against environmental pollution was not done in this particular 

dumpsite. Hence, it was predicted that the leachate from this dumping site would have surely polluted 

the surrounding groundwater. The total area available for the disposal of solid waste is 118 acres, of 

which 44 acres is used for disposal. 

 

 
Figure 1. Study area and sampling points 

 

Geological strata in Ramaiyanpatti is of horn blended biotite gneissic formation overlaid by 

weathered rock formation followed by thin soil. The general rock formation is striking in east-west 

direction and dipping towards south with an angle of 75oS. It is found that limestone flanked by Kankar 

followed by quartzite on the northern side and magnesium limestone, calcareous quartzite and calcgneiss 

on the southern side. The study area falls under pediment geomorphic unit with the absence of 

lineaments. In general, the Pediments are hard rock terrains forming outcrops with or without soil cover.  

 

2.2 Sampling method 

The water samples were collected from 16 sampling points every month for 5 years (January 2013 

to December 2017) (Table 1). From the open wells, the water samples were collected at a depth of 0.45 
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m. As soon as the samples were collected, the bottles were labeled immediately and transposed to the 

environmental lab of Government College of Engineering, Tirunelveli at the earliest. In that laboratory, 

the water samples were preserved in an incubator at 4oC. Collected water samples were analysed as per 

IS 3025-2009: Methods of sampling and test (physical and chemical) for water and wastewater. 

 

Table 1. Locations of sampling points 

Sampling 

Points 
Description Location 

Distance from 

dumpsite 
Latitude Longitude 

Elevation   

in m 

S1 Borewell 10/3E, Sankaran kovil road 850m SE 8o45’29’’N 77o41’09’’E 51.0 

S2 Borewell 10/200, Annai Velankani Nagar 685m SE 8o45’29’’N 77o41’01’’E 52.0 

S3 Borewell 252, Annai Velankani Nagar. 700m SE 8o45’33’’N 77o41’06’’E 51.5 

S4 Borewell Municipal weigh bridge office 650m E 8o45’41’’N 77o41’08’’E 50.0 

S5 Hand pump Sastha temple 400m W 8o45’51’’N 77o40’35’’E 55.0 

S6 Openwell Muthaliyar grove farm land 300m S 8o45’36’’N 77o40’45’’E 54.0 

S7 Borewell Veterinary College campus 480m NE 8o45’58’’N 77o40’57’’E 52.0 

S8 Borewell Symon Nagar 720m NE 8o46’06’’N 77o40’59’’E 53.0 

S9 Hand pump 231, Symon Nagar 780m NE 8o46’05’’N 77o41’04’’E 52.0 

S10 Borewell Arasu New colony 860m NE 8o46’01’’N 77o41’10’’E 51.5 

S11 Hand pump Arasu New colony 920m NE 8o46’0.15’’N 77o41’11’’E 51.0 

S12 Borewell 306, Sivaji Nagar 800m NE 8o45’57’’N 77o41’09’’E 51.0 

S13 Bore well 275, Sivaji Nagar 620m NE 8o45’52’’N 77o41’04’’E 50.0 

S14 Bore well 390, Sivaji Nagar 650m NE 8o45’49’’N 77o41’07’’E 48.5 

S15 Hand pump 387, Sivaji Nagar 640m NE 8o45’47’’N 77o41’08’’E 48.0 

S16 Bore well Balaji Nagar 900m NE 8o45’49’’N 77o41’14’’E 47.5 

 

All the samples collected were analysed for their quality. The results obtained were recorded 

immediately and kept safely. For quality analysis, the experiments such as pH, acidity, alkalinity, 

sulphate, hardness, chloride and TDS were conducted for each sample.  

 

2.3 Water quality index (WQI) 

To convert large quantities of water quality data into a single number, Water Quality Index (WQI) is 

used which represents the overall drinking water quality status  [12]. The WQI was computed for each 

sampling point. In this study work, weighted arithmetic water quality index method has been used for 

computing WQI [13]. Water Quality Index (WQI) which was calculated in three stages. In stage 1, each 

of the 6 parameters has been assigned a weight (wi) according to its influence in the overall quality of 

water for drinking purposes (Table 2). 

 

Table 2. Standards and its weights of parameters 

Parameter 
Drinking water standard as IS 

10500 
Weight 

pH 6.5 – 8.5 4 

Sulphate (mg/L) 200 4 

TDS (mg/L) 500 4 

Chloride (mg/L) 250 3 

Hardness (mg/L) as CaCO3 300 3 

Alkalinity (mg/L) as 

CaCO3 

200 
2 

 

The maximum weight of 4 has been assigned to the parameters pH, TDS and Sulphate due to their 

importance in water quality assessment. Weight of 3 has been assigned to the parameters Hardness and 

chloride. For Alkalinity the minimum weight of 2 is assigned which indicates that, it may not be 

deleterious. In stage 2, the relative weight (Wi) is computed from the following equation: 

 

Wi =
Wi

∑ wi
n
i=1

     (1) 
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where, Wiis the relative weight of each parameter and n is the number of parameters. Stage 3, a quality 

rating scale (qi) is assigned for each parameter by dividing its respective standard according to the 

guidelines by IS10500:2012 and the result multiplied by 100. 

 

q
i
= (

Ci
Si

⁄ ) ×100    (2) 

 

where, qi is the quality rating, Ci is the concentration of each parameter in each water sample, and Si is 

the IS10500:2012 drinking water standard for each parameter. For computing the WQI, first Sli for each 

parameter is determined, which is then used to determine WQI by the following equation 

 

Sli = Wi× qi      (3) 

                                        IWQI = ∑ Sli                   (4) 

 

Sli is the sub index of ith parameter: qi is the rating based on concentration of ith parameter and n is 

the number of parameters [14]. 

 

2.4 Correlation analysis 

In this study, the total number of data collected by analysis the water samples were 704. Because of 

this large data set, descriptive analysis was carried out. From the descriptive analysis minimum, 

maximum, mean, range, standard deviation, variance, skewness and kurtosis were obtained [15]. 

Correlation analysis is a preliminary bivariate technique adopted to establish the degree of relationship 

between the parameters involved in a physico chemical process [16]. If the correlation coefficient is 

close to +1 or -1 then the relationship between the parameters is good and if the coefficient is near zero 

there is no relationship between the parameters at significant level (p) of < 0.01 [17].  

 

2.5 Statistical analysis 

The Statistical Package for the Social Sciences (SPSS) was used by researchers in various fields for 

analysing complex statistical data. It involves some advanced inferential and multivariate statistical 

procedures such as factor analysis, discriminant analysis, analysis of variance, etc., [18].  This analysis 

technique helps to simplify and organize large sets of data  in order to make useful generalizations and 

insight [19]. In this study a relation was established by using SPSS regression analysis. TDS was 

considered as dependent parameter whereas Sulphate, chloride and temporary hardness were 

independent parameters. 

 

2.6 ANN modelling 

The ANN is used to learn complex input and output relationships. They require no clearly defined 

algorithms or theory rather they have a property of acquiring knowledge through the presentation of 

examples. A neural network consists of at least three layers, i.e., input layer, hidden layer and output 

layer, where the inputs are fed in the input layer and outputs were attained at the output layer and learning 

is achieved when the associations between a specified set of input, output pairs are established [20].  

In this study, ANN model was developed to establish the relationship between TDS and the related 

parameters like Sulphate, Chloride and temporary hardness. Artificial Neural Network architecture 

consists of an input layer with the number of processing elements equal to the predictor variables and an 

output layer with the number of processing elements equal to the predicted variables. In between the 

input and output layers, there are hidden layers and the number of processing elements in each hidden 

layer was fixed on trial and error and depend on the desired accuracy of the model [21]. ANN was used 

to design the relationship between the independent variables and the dependent variable, for the sets of 

data obtained from the water quality analysis. The Back Propagation (BP) algorithm was used to predict 

the target. Two hidden layers, each with 10 neurons were used (Figure 2). 
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Figure 2. Back propagation algorithm of ANN 

 

3.Results and discussions 
The summary of physico chemical parameters of the groundwater was given as statistical descriptive  

(Table 3).  

    

Table 3. Descriptive statistics of groundwater samples 

 
 

3.1 pH 

The intensity of acidity and alkalinity of water is measured by pH. It is the major factor which 

influences all chemical and biological process [22]. From the water quality analysis there is a periodic 

variation in the values of physico-chemical parameters over the study period of five years. It is found 

that the values of pH had increased altogether from 6.71 to 8.56 during the period January 2013 to 

December 2017. The lowest pH value of 6.71 was found at the sampling point S4 during the month of 

May 2013. The highest pH value was found at the station S11 during the month of December 2017 which 

was 8.56. The pH values of all the groundwater samples around the dumpsite are within the permissible 

limit of pH 6.5 – 8.5 as per IS 10500 - 2012, except the sampling station S9 and S11 during December 

2017. 

 

3.2 Acidity and alkalinity 

The capacity of water to neutralize an acid is termed as Alkalinity. It is mostly due to the presence 

of carbonate, bicarbonate and Hydroxyl ions. Acidity known as the number of ionizable hydrogen ions 

present in one molecule. Acidity may also be induced through carbon di oxide and is called carbonic 
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acidity. If pH is more than 7, carbonic acidity may be present in the sample [23]. It is observed that the 

acidity and alkalinity value vary from 6.00 mg/L to 73.00 mg/L and 84.00 mg/L to 488.00 mg/L 

respectively during the period January 2013 to December 2017. It is also observed that there is regular 

increase of the alkalinity in rainy season and there is a decrease in summer season. From the above study 

it is observed that the acidity and alkalinity value is lowest in the month of March 2013 and September 

2013 at station S6. The lowest acidity and alkalinity values are 6.00mg/L and 84.00 mg/L respectively. 

The highest acidity and 122 alkalinity values are observed at the station S11 and S15 during the month 

of December 2017 and its values are 73.00 mg/L and 488.00 mg/L. 

 

3.3 TDS 

TDS is mainly induced by anionic and cationic substances present in the water sample in dissolved 

manner [24]. The permissible limit of drinking water standard for TDS prescribed by BIS is 500 mg/L. 

It is found that the concentration of TDS had varies from 334 mg/L to 3448 mg/L during the period 

January 2013 to December 2017. From the research work it is observed that the TDS concentration is 

lowest at the station S5 during the month of August 2013. The lowest TDS value is 334 mg/L. The 

highest TDS concentration is observed at the station S14 during the month of December 2017. The 

highest TDS value is 3439 mg/L. The high concentrations of TDS in groundwater near the dumpsite are 

due to the percolation of leachate. The flow of leachate is also more during monsoon season. From the 

results it was observed that there is a regular increase of TDS in the rainy season and there is a decrease 

of TDS in the summer season. The TDS depends upon dissolution of leachate and rock minerals due to 

the action of water which penetrates through the rock strata. During the rainy season, the penetration of 

water is high. Hence the TDS values are more. But during the summer season, due to lack of rainfall and 

evaporation of moisture content from Municipal Solid Waste, penetration of water is low. Therefore, the 

TDS value in groundwater is low. 

 

3.4 Hardness 

Hardness is induced by divalent metallic cationic substances mainly calcium and magnesium [25]. 

BIS has prescribed 300 mg/L as CaCO3 as the acceptable limit and 600 mg/L CaCO3 as the permissible 

limit for total hardness. It is observed that the hardness value varies from 38.00 to 1353.00 mg/L as 

CaCO3 during the period January 2013 to December 2017. It is also observed that there is regular 

increase of the hardness value in rainy season and there is a decrease of the harness value in summer 

season. From the above study it is observed that the hardness value is lowest at the station S5 during the 

month of January 2013. The lowest hardness value is 38.63 mg/L as CaCO3. The highest hardness value 

is observed at the station S15 during the month of December 2017. The highest hardness value is 1353.69 

mg/L as CaCO3. The concentration of hardness was exceeding the permissible limit in sampling points 

S4, S10, S11, S13, S14, S15 and S16 throughout the sampling period. 

 

3.5 Chloride 

Chloride is an anion formed by dissolving chloride compounds primarily hydrogen chloride in water 

or any other polar solvents [26]. The parameter is compared with drinking water standard as per IS 

10500-2012, which has a permissible limit of chloride as 250 mg/L. It is observed that the chloride value 

varies from 54.5 mg/L to 909.5 mg/L during the period January 2013 to December 2017. It is also 

observed that there is regular increase of the chloride concentration in rainy season and there is a decrease 

of the chloride concentration in summer season. From the above study it is observed that the chloride 

value is lowest at the station S9 during the month of September 2013. The lowest chloride value is 54.5 

mg/L. The highest chloride value is observed at the station S13 during the month of December 2017. 

The highest chloride value is 909.5 mg/L. During the sampling period, the chloride concentration in the 

sampling points S1, S2, S5, S6, S9 and S12 were found to be within the permissible limit, while the 

chloride concentration was above the permissible limits in sampling points S4, S7, S13, S14, S15 and 

S16 throughout the sampling period. 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 72(1), 2021, 132-144                                                             138                                  https://doi.org/10.37358/RC.21.1.8410                                                     
    

 

 

3.6 Sulphate 

The presence of sulphate in the groundwater around dumpsite is generally due to the dissolution of 

the waste products formed from decaying organic matter [27]. The parameter is compared with drinking 

water standard as per IS 10500-2012, which has a permissible limit of 200 mg/L. It is observed that the 

sulphate value varies from 31.07 to 359.82 mg/L during the period January 2013 to December 2017. It 

is also observed that there is regular increase of the sulphate concentration in rainy season and there are 

decreases of the sulphate concentration in summer season. From the above study it is observed that the 

sulphate value is lowest at the station S1 during the month of September 2013. The lowest sulphate value 

is 31.07 mg/L. The highest sulphate value is observed at the station S12 during the month of December 

2017. The highest sulphate value is 359.82 mg/L. 

 

3.7 WQI 

It is observed that the WQI value varies from 39.25 to 303.13 during the period January 2013 to 

December 2017. It is also observed that there is regular increase of the WQI value in rainy season and 

there was decreased of the WQI value in summer season. From the above study it is observed that the 

WQI value is lowest at the station S5 during the month of September 2013. The lowest WQI value is 

39.25. The highest WQI value is observed at the station S14 during the month of December 2017. The 

highest WQI value is 303.13. From the observations, it is clear that the sampling points S7, S13, S14, 

S15 and S16 are affected very much. The qualities of water in this sampling point are very poor to water 

unsuitable for drinking purpose. The WQI values in these stations indicate that, remedial measures must 

be taken immediately to safe guard the underground water in the study area (Table 4). 

 

Table 4. Interpretation of the water quality index (WQI) value 
Sl. No. WQI Value Remarks Sampling Point 

1 0 – 50 Excellent ------- 

2 50 – 100 Good Water S5, S6 

3 
100 – 200 Poor Water 

S1, S2, S3, S4, S7, 

S8, S9, S10, S11, S12 

4 200 – 300 Very Poor Water S13, S16 

5 
>300 

Water unsuitable 

for drinking 

S14, S15 

 

In the rainy season, the concentration of water quality parameters increases the WQI and in the 

summer season it is decreased. The concentration of WQI was increased every year during the study 

period. Based on the interpretation of WQI value it is clear that the sampling points S13, S14, S15 and 

S16 are affected very much. 

 

3.8 Correlation analysis 

Correlation analysis is the extent of linear relationship between any pair of the physico chemical 

parameters as computed by the Pearson’s product moment correlation [28]. The relationship between 

the parameters of groundwater is estimated by correlation coefficient which shows significant 

correlation as Table 5. 

TDS showed a higher degree of positive correlation with groundwater quality parameters like 

chloride (0.962) and total hardness (0.906) and weak correlation with sulphate (0.112). These values 

revealed that higher TDS was mainly due to the presence of ions, which further substantiated the fact 

that groundwater contamination was occurring due to generation and migration of landfill leachate [29]. 

The association between total hardness and chloride showed positive higher degree of correlation 

(0.837). For sulphate the degree of positive correlation with alkalinity shows significantly moderate 

(0.467) and with chloride very weak correlation (0.052). The WQI showed higher degree of positive 

correlation with TDS, chloride and total hardness, moderate correlation with alkalinity and acidity and 
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weak correlation with sulphate and pH. It shows WQI values mostly associate with TDS, chloride and 

total hardness. In this study the relation between all the parameters shows a positive correlation [30]. 

 

Table 5. Pearson’s correlation matrix of the analysed groundwater quality parameters 

 pH Acidity Alkalinity Sulphate Total Hardness Chloride TDS WQI 

pH 1 
       

Acidity 0.037 1 
      

Alkalinity 0.274** 0.407** 1 
     

Sulphate 0.304** 0.116** 0.467** 1 
    

Total Hardness 0.056 0.405** 0.523** 0.200** 1 
   

Chloride 0.106** 0.240** 0.315** 0.052 0.837** 1 
  

TDS 0.032 0.254** 0.397** 0.112** 0.906** 0.962** 1 
 

WQI 0.150** 0.319** 0.514** 0.237** 0.945** 0.946** 0.980** 1 

**. Correlation is significant at the 0.01 level (1-tailed). 

 

3.9 SPSS statistical analysis 

The available SPSS Regression analysis is used to arrive at the regression equation to predict the 

TDS by incorporating the independent parameters such as chloride, sulphate and temporary hardness. A 

model is said to be a best model, if the sum of the square of the error between the predicted and observed 

values is minimum [31,32]. Due to the wide range in the available data and high percentage error, a 

single equation was not suitable for predicting TDS. So multi linear regression (MLR) equation was 

suitable for highly polluted sampling points and multi nonlinear regression (MNLR) equation was 

suitable for least polluted sampling points, as this gives low percentage error. The selected multi linear 

regression equation (5) for TDS is 

 

𝑇𝐷𝑆 = 𝑘 + 𝑥 × 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒 + 𝑦 × 𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒 + 𝑧 × 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠   (5) 

 

where, k is regression constant; x, y and z are predictors coefficient in multi linear regression analysis. 

The values of regression constant and predictor coefficient of MLR equation are listed out in Table 6a. 

The correlation between the parameter estimates of MLR equation is listed out in Table 6b. 

 

Table 6a. MLR equation parameter estimates 

Parameter Estimate Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

k 34.740 29.409 -23.000 92.481 

x 3.378 .039 3.301 3.455 

y .429 .149 .137 .722 

z .952 .127 .704 1.201 

 

Table 6b. Correlations between parameter estimates of MLR equation 
 k x y z 

k 1.000 -.145 -.442 -.487 

x -.145 1.000 .125 -.426 

y -.442 .125 1.000 -.403 

z -.487 -.426 -.403 1.000 

 

The positive sign of the beta coefficients of chloride, sulphate and temporary hardness indicate that 

a positive relationship exists between TDS and chloride of the groundwater, as well as between TDS 

and sulphate and temporary hardness constituents of the groundwater for the highly polluted sampling 

points. The TDS value in sampling point S14 (highly polluted sampling point) was predicted using 

equation (5), the minimum and maximum percentage error obtained were 2.85 and 13.37 % respectively. 
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The R2 value for the MLR equation was found to be 0.937, which shows that the MLR equation is best 

suitable for predicting TDS values of highly polluted sampling points. 

The selected MNLR equation (6) for TDS prediction is. 

 

𝑇𝐷𝑆 = 𝑎 + (𝑏 × 𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒0.5) + (𝑐 × 𝑠𝑢𝑙𝑝ℎ𝑎𝑡𝑒0.75) + (𝑑 × 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠)  (6) 

 

where, a is regression constant; b, c and d are predictors coefficient in multi nonlinear regression 

analysis. The values of regression constant and predictor coefficient of MNLR equation are listed out in 

Table 7a. The correlation between the parameter estimates of MNLR equation is listed out in Table 7b. 

 

Table 7a. MNLR equation Parameter Estimates 

Parameter Estimate 
Std. 

Error 

95% Confidence Interval 

Lower Bound Upper Bound 

a -751.463 348.165 -1443.827 -59.100 

b 182.183 11.925 158.469 205.898 

c -12.666 6.508 -25.609 0.276 

d -1.693 0.842 -3.368 -0.017 

 

Table 7b. Correlations between Parameter Estimates of MNLR equation 
 a b c d 

a 1.000 -.481 -.580 -.148 

b -.481 1.000 .115 -.443 

c -.580 .115 1.000 -.395 

d -.148 -.443 -.395 1.000 

 

The positive sign of the beta coefficients of chloride indicate that a positive relationship exists 

between TDS and chloride of the groundwater and the negative sign of the beta coefficient of sulphate 

and temporary hardness indicates that a negative relationship exists between TDS and sulphate of the 

groundwater as well as between TDS and temporary hardness constituents of the groundwater for the 

least polluted sampling points. The TDS value in sampling point S5 (least polluted sampling point) was 

predicted using equation (6), the minimum and maximum percentage error obtained were 2.85% and 

13.37% respectively. The R2 value for the MLR equation was found to be 0.897, which shows that the 

MNLR equation is best suitable for predicting TDS values of least polluted sampling points. 

 

3.10 ANN modelling 

ANNs are characterised by their topology, weight vectors and an activation function that are used in 

the hidden layers and the output layer [33]. In this study, multilayer perceptron, with each layer 

consisting of a number of computing neurons have been used. A multilayer perceptron trained with the 

back-propagation algorithm can be considered as a practical way of functioning a nonlinear input-output 

mapping of a general nature. The activation function used in both the hidden layer and the output layer 

is a non-linear function, whereas for the input layer, no activation function is used since no computation 

is involved in the input layer. All neurons in a particular layer are fully linked to the neurons in the 

adjacent layers. Information flows from one layer to other layer in a feed forward manner. The Feed 

Forward Back Propagation (FFBP) network is a popular architecture among different types of neural 

networks and finds its application in several areas of Engineering [34].  

The ANNs need larger volumes of data so that it learns better and predicts the output accurately. The 

data thus obtained were used for training the ANN for assessment of TDS. For the sampling point S5 

and S14, the data were taken as test data to predict the TDS value and that value is used to compare with 

the expected TDS value to obtain the % of error. this study work, models were developed by using ANN. 

The parameters chloride, sulphate and temporary hardness were chosen as the inputs and TDS was the 

target to train the neural networks. After completion of training, weights between input layers to hidden 
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layer, hidden layer to output layer, to be generated. Testing was done for sampling point S5 and S14. 

The R2 value obtained from training and testing are 0.99845 and 0.996244 respectively which shows that 

the model is best suitable for predicting TDS (Figure 3).  

 

 
Figure 3. ANN Regression graph 

 

3.11 SPSS and ANN comparison 

Sampling points S1 to S8 data were used for training the network, in which the algorithm, training 

function, learning function and performance function were used as feed forward back propagation, 

TRINLM, LEARNGDM and MSE respectively [35]. In this modeling, 2 numbers of hidden layers and 

10 neurons in each layer were chosen. The performance of SPSS MLR model was collated with that of 

ANN model by comparing their R2 value and percentage error. The percentage error was calculated by 

comparing predicted TDS value with observed TDS value. For this comparison S5 and S14 sampling 

points were chosen. The R2 value obtained from SPSS MNLR model and ANN model for S5 sampling 

point was 0.897 and 0.99624 respectively. Likewise, for the sampling point S14, R2 value obtained from 

SPSS MLR model and ANN model was 0.937 and 0.99624 respectively. The variation between observed 

TDS and predicted TDS from SPSS MNLR model and ANN model for sampling point S5 was depicted 

in (Figure 4).   

 
Figure 4. Comparative graph of predicted TDS for sampling point S5 
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The minimum percentage error obtained from SPSS MNLR model and ANN for S5 sampling point 

were 0.12 and 0.1% respectively. The maximum percentage error obtained from SPSS MNLR model 

and ANN were 15.6 and 7.5% respectively. The variation between observed TDS and predicted TDS 

from SPSS MLR model and ANN model for sampling point S14 was depicted in (Figure 5).   

 

 
Figure 5. Comparative graph of TDS for sampling point S14 

 

For S14 sampling point, the minimum percentage error obtained from SPSS MLR and ANN model 

were 2.85 and 0.14% respectively. The maximum percentage error obtained from SPSS MLR and ANN 

model were 13.37 and 5.44% respectively. This shows that ANN model gives least percentage error than 

SPSS MLR model. So that ANN model was best suitable for predicting TDS around the dump site. 

 

4. Conclusions 
The Ramaiyanpatti dumpsite is a non-engineered landfill. It has no bottom liner and leachate 

collection -treatment system. Therefore, the leachate gets transported easily into the surrounding 

environment. Moreover, leachate emerging from the waste that has been dumped in the unlined dumpsite 

has severely affected the groundwater quality of the surrounding areas. The WQI for every sampling 

point increased in the monsoon season and decreased in the summer season. The WQI values in the 

stations S4, S7, S13, S14, S15 and S16 indicate high pollution due to leachate. The highest WQI value 

is 303.13 at sampling point S14. The groundwater quality along the downstream side of solid waste 

dumping site in Tirunelveli Municipal Corporation at Ramaiyanpatti is very poor.  

The prediction capabilities of the ANN were compared with the SPSS regression models. The 

maximum percentage of error obtained from ANN and SPSS were 7.5 and 15.6% at S5 sampling point. 

ANN models were more accurate than the SPSS multi nonlinear regression models having the same 

inputs and output. Study findings revealed that the groundwater is unacceptable for drinking and 

agricultural purposes in sampling points S4, S7, S13, S14, S15 and S16. It is recommended that borewell 

water in the study area should be treated before it is used for drinking purpose. The municipality should 

make proper Leachate collection technique to avoid the contamination of groundwater.  
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